Monte Carlo-Based Covariance Matrix of Residuals and Critical Values in Minimum L1-Norm

Author:

Suraci Stefano Sampaio1ORCID,Oliveira Leonardo Castro de1ORCID,Klein Ivandro2ORCID,Rofatto Vinicius Francisco3ORCID,Matsuoka Marcelo Tomio4ORCID,Baselga Sergio5ORCID

Affiliation:

1. Defense Engineering Program, Military Institute of Engineering, Rio de Janeiro 22290-270, Brazil

2. Graduate Program in Geodetic Sciences, Federal University of Paraná, Curitiba 81531-990, Brazil

3. Institute of Geography, Federal University of Uberlândia, Monte Carmelo 38500-000, Brazil

4. Graduate Program in Agriculture and Geospatial Information, Federal University of Uberlândia, Monte Carmelo 38500-000, Brazil

5. Department of Cartographic Engineering, Geodesy and Photogrammetry, Universitat Politècnica de València, Valencia 46022, Spain

Abstract

Robust estimators are often lacking a closed-form expression for the computation of their residual covariance matrix. In fact, it is also a prerequisite to obtain critical values for normalized residuals. We present an approach based on Monte Carlo simulation to compute the residual covariance matrix and critical values for robust estimators. Although initially designed for robust estimators, the new approach can be extended for other adjustment procedures. In this sense, the proposal was applied to both well-known minimum L1-norm and least squares into three different leveling network geometries. The results show that (1) the covariance matrix of residuals changes along with the estimator; (2) critical values for minimum L1-norm based on a false positive rate cannot be derived from well-known test distributions; (3) in contrast to critical values for extreme normalized residuals in least squares, critical values for minimum L1-norm do not necessarily tend to be higher as network redundancy increases.

Funder

Department of Science and Technology of the Brazilian Army

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3