Effect of Basketball Sports on Serum Superoxide Dismutase and Its Relationship with the Nanoparticle Drug Delivery System

Author:

Wang Jinzhong1,Guo Zhenhua2ORCID

Affiliation:

1. Department of Humanities and Social Sciences, Zhejiang Industry Polytechnic College, Shaoxing 312000, Zhejiang, China

2. Physical Science College of Jishou University, Jishou 416000, Hunan, China

Abstract

Human survival is impossible without oxygen, and as the body load continues to increase, the need for oxygen intake becomes greater. However, oxygen is also a double-edged sword for the human body. A large number of studies have proved that excessive intake of oxygen might lead to oxygen poisoning. Even under normal oxygen uptake, there is still a certain proportion of SOD conversion in oxygen. Superoxide dismutase (SOD) is one of the main causes of oxygen poisoning and chronic diseases. It is of great significance to study the changes of SOD in a large amount of oxygen environment. However, there are a few research studies in this field at home and abroad. Therefore, this paper puts forward the influence of basketball sports on serum superoxide dismutase (SOD) and its relationship with the nanoparticle drug delivery system. The research of this paper is mainly divided into three parts. The first part is the research of theoretical basis and core concepts. Through this part of the study, this paper shows that exercise can make the human body strong, while controlling the transformation of SOD, and only in this way can we achieve the true meaning of sports health. The second part is the establishment method of the test model of the influence of basketball on SOD and the nanoparticle drug delivery system. In this part, the principle and operation steps of the design method are given in detail. In order to ensure the effect of the experiment, the test standard was established, and the whole process data were recorded for the retrospective study. The third part is the comparative experiment, which includes the influence of different exercise intensities on SOD activity and the preservation stability of nanoparticles. Through the analysis of experimental data, it was found that basketball increased the risk of SOD transformation, but at the same time, using nanoparticles intervention can effectively reduce the harm of SOD to the human body.

Funder

Department of Education of Zhejiang Province

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3