Analytical Approximate Solutions of Caputo Fractional KdV‐Burgers Equations Using Laplace Residual Power Series Technique

Author:

Burqan AliaaORCID,Khandaqji MonaORCID,Al-Zhour ZeyadORCID,El-Ajou AhmadORCID,Alrahamneh Tasneem

Abstract

The KdV‐Burgers equation is one of the most important partial differential equations, established by Korteweg and de Vries to describe the behavior of nonlinear waves and many physical phenomena. In this paper, we reformulate this problem in the sense of Caputo fractional derivative, whose physical meanings, in this case, are very evident by describing the whole time domain of physical processing. The main aim of this work is to present the analytical approximate series for the nonlinear Caputo fractional KdV‐Burgers equation by applying the Laplace residual power series method. The main tools of this method are the Laplace transform, Laurent series, and residual function. Moreover, four attractive and satisfying applications are given and solved to elucidate the mechanism of our proposed method. The analytical approximate series solution via this sweet technique shows excellent agreement with the solution obtained from other methods in simple and understandable steps. Finally, graphical and numerical comparison results at different values of α  are provided with residual and relative errors to illustrate the behaviors of the approximate results and the effectiveness of the proposed method.

Funder

Zarqa University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3