Affiliation:
1. The Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
2. Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
Abstract
With the increasing application of unmanned aerial vehicles (UAVs), UAV-based base stations (BSs) have been widely used. In some situations when there is no ground BSs, such as mountainous areas and isolated islands, or BSs being out of service, like disaster areas, UAV-based networks may be rapidly deployed. In this paper, we propose a framework for UAV deployment, power control, and channel allocation for device-to-device (D2D) users, which is used for the underlying D2D communication in UAV-based networks. Firstly, the number and location of UAVs are iteratively optimized by the particle swarm optimization- (PSO-) Kmeans algorithm. After UAV deployment, this study maximizes the energy efficiency (EE) of D2D pairs while ensuring the quality of service (QoS). To solve this optimization problem, the adaptive mutation salp swarm algorithm (AMSSA) is proposed, which adopts the population variation strategy, the dynamic leader-follower numbers, and position update, as well as
-learning strategy. Finally, simulation results show that the PSO-Kmeans algorithm can achieve better communication quality of cellular users (CUEs) with fewer UAVs compared with the PSO algorithm. The AMSSA has excellent global searching ability and local mining ability, which is not only superior to other benchmark schemes but also closer to the optimal performance of D2D pairs in terms of EE.
Funder
Seed Fund for International Scientific Research Cooperation
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems