Effects of Qinghuang Powder on Acute Myeloid Leukemia Based on Network Pharmacology, Molecular Docking, and In Vitro Experiments

Author:

Zeng Ying-jian12,Wu Min12,Zhang Huan2,Wu Xin-ping2,Zhou Lu2,Wan Na1ORCID,Wu Zhen-hui12ORCID

Affiliation:

1. Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China

2. The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, Jiangxi Province, China

Abstract

Qinghuang powder (QHP) is a traditional Chinese herbal medicine. This is a unique formula that is frequently used to treat malignant hematological diseases such as acute myeloid leukemia (AML) in modern clinical practice. An approach of network pharmacology and experimental validation were applied to investigate the pharmacological mechanisms of QHP in AML treatment. First, public databases for target genes known to be associated with AML are searched and compared to the target genes of the active compounds in QHP. Second, AML-associated genes and QHP target genes are compared to identify overlapping enriched genes, and these were used to predict selected target genes that may be implicated in the effects of QHP on AML. Additionally, we conducted functional enrichment analyses, such as gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The significantly enriched pathway associated with potential target proteins was the PI3K-Akt signaling pathway, suggesting that these potential target proteins and pathways may mediate the beneficial biological effects of QHP on AML. All these following genes were found to occur in the compounds-target-pathway networks: AKT1, MAPK1, MAPK3, PIK3CG, CASP3, CASP9, TNF, TGFB1, MAPK8, and TP53. Then, based on the molecular docking studies, it was suggested that the active compound isovitexin can fit into the binding pockets of the top candidate QHP-AML target proteins (PIK3CG). Subsequently, based on the prediction by network pharmacology analysis, both in vitro AML cells and western blot experiments were performed to validate the curative role of QHP. QHP exerted its antitumor activity on AML in vitro, as it inhibits cells proliferation, reduced the expression of Bcl-2 protein, and downregulated the PI3K-Akt signaling pathway. In conclusion, these results revealed that QHP could treat AML via a “multicomponent, multitarget, multipathway” regulatory network. Furthermore, our study also demonstrated that the combination of network pharmacology with the experimental study is effective in discovering and identifying QHP in the treatment of AML and its underlying pharmacological mechanisms.

Funder

Natural Science Foundation of Jiangxi Province

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3