Dynamic Analysis of High-Speed Helical Gear Transmission in Pure Electric Vehicle Gearbox

Author:

Zhang Yanchao1ORCID,Du Jinfu2ORCID,Mao Jin1,Xu Min3

Affiliation:

1. School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China

2. Key Laboratory of Shaanxi Province for Development and Application of New Transportation Energy, Chang’an University, Xi’an 710064, China

3. AECC Xi’an Engine Control Technology Co., Ltd., Xi’an 710077, China

Abstract

This study is to systematically analyze the influences of time-varying meshing stiffness (TVMS) and meshing impact on the dynamic characteristics of high-speed gear transmission in the two-stage pure electric vehicle (PEV) gearbox, as well as the effect of tooth surface modification on the vibration control. First, the dynamic model was established, and the TVMS and meshing impact were calculated. Then, the vibration characteristics of single-stage and two-stage helical gear transmission were analyzed under three different excitation conditions, excitation of TVMS, excitation of meshing impact, and excitation of both. The results show that the effect of rotating speed on the system vibration is not significant outside the resonant region under the excitation of TVMS, while the effect of meshing impact becomes the main exciting component with the increasing rotating speed. The vibrations of the two gear pairs interact with each other; the vibration frequency of one gear pair contains both its meshing frequency and the coupling frequency of the other gear pair. Tooth surface modification in the input-stage gear pair can reduce the vibration of both the input- and the output-stage obviously; that is, more attention should be paid to the input-stage gear pair in the modification design of PEV gearbox.

Funder

Key Research and Development Projects of Shaanxi Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3