Rhizobacteria Communities of Phytoremediation Plant Species in Petroleum Hydrocarbon Contaminated Soil of the Sudd Ecosystem, South Sudan

Author:

Ruley J. A.12ORCID,Tumuhairwe J. B.1,Amoding A.1,Westengen O. T.3,Vinje H.4

Affiliation:

1. Department of Agricultural Production, Makerere University, P.O. Box 7062, Kampala, Uganda

2. Department of Agricultural Sciences,CNRES, University of Juba, P.O. Box 82, Juba, Sudan

3. Department of International Environment and Development Studies (Noragric), Norwegian University of Life Sciences (NMBU), Ås, Norway

4. Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway

Abstract

The Sudd wetland is one of the oil-rich regions of South Sudan where environmental pollution resulting from oil extraction activities has been unprecedented. Although phytoremediation is the most feasible technique, its efficacy reduces at high TPH concentration in soil. This has made rhizoremediation the most preferred approach. Rhizoremediation involves use of a combination of phytoremediation and biostimulation. The process is catalyzed by the action of rhizobacteria. Therefore, the objective of this study is to characterize rhizobacteria communities prevalent in phytoremediation species growing in hydrocarbon-contaminated soils biostimulated with cattle manure. The treatments studied were plant species only (T1), plant species and hydrocarbons (T2), plant species and manure (T3), and plant species, manure, and hydrocarbons (T4). The rhizobacteria communities were determined using pyrosequencing of 16S rRNA. In the treatment with phytoremediation species, hydrocarbons 75 g · kg−1soil, and cattle manure 5 g · kg−1soil (T4), there was a significant increase ( p < 0.05 ) in rhizobacteria abundance with the highest ASV observed in H. rufa (4980) and the lowest in S. arundinaceum (3955). In the same treatment, bacteria community diversity was high in H. rufa (Chao1, 10310) and the least in S. arundinaceum (Chao 1, 8260) with Proteobacteria, Firmicutes, and Actinobacteria as the dominant phyla. Similarly, in contaminated soil treated with cattle manure, there was a significant increase ( p < 0.05 ) in abundance of rhizobacteria genera with Pseudomonas dominating across phytoremediation species. H. rufa was dominated by Bacillus, Fusibacter, and Rhodococcus; G. barbadense was mainly associated with Luteimonas and Mycobacterium, and T. diversifolia was inhabited by Bacillus and Luteimonas. The rhizosphere of O. longistaminata was dominated by Bacillus, Fusibacter, and Luteimonas, while S. arundinaceum was largely inhabited by Sphingomonas. These rhizobacteria genera ought to be applied in the Sudd region for bioremediation.

Funder

NORAD

Publisher

Hindawi Limited

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3