Assessment of Soil Thermal Conductivity Based on BPNN Optimized by Genetic Algorithm

Author:

Liu Chenyang1ORCID,Hu Xinmin1,Yao Ren2,Han Yalu1,Wang Yong1,He Wentong1,Fan Huabin3,Du Lizhi1ORCID

Affiliation:

1. College of Construction and Engineering, Jilin University, Changchun 130000, China

2. Shanghai Zhongpu Exploration Technology Research Institute Co., Ltd., Shanghai 200000, China

3. Jiaoke Transport Consultants Ltd., Beijing 100000, China

Abstract

Thermal conductivity is a critical parameter playing an important role in the heat transfer process in thermal engineering and enormous other engineering fields. Thus, the accurate acquisition of thermal conductivity has significant meaning for thermal engineering. However, compared to density test, moisture content test, and other physical property tests, the thermal conductivity is hard and expensive to acquire. Apparently, it has great meaning to accurately predict conductivity around a site through easily accessible parameters. In this paper, 40 samples are taken from 37 experimental points in Changchun, China, and the BPNN optimized by genetic algorithm (GA-BPNN) is used to evaluate the thermal conductivity by moisture content, porosity, and natural density of undisturbed soil. The result is compared by two widely used empirical methods and BPNN method and shows that the GA-BPNN has better prediction ability for soil thermal conductivity. The impact weight is obtained through mean impact value (MIV), where the natural density, moisture content, and porosity are 30.98%, 55.57%, and 13.45%, respectively. Due to high complexity of different parameter on thermal conductivity, some remolded soil specimens are taken to study the influence of individual factors on thermal conductivity. The correlations between moisture content and porosity with thermal conductivity are studied through control variable method. The result demonstrates that the impact weight of moisture content and porosity can be explained by remolded soil experiment to some extent.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3