Dynamic Response Analysis of Retaining Dam under the Impact of Solid-Liquid Two-Phase Debris Flow Based on the Coupled SPH-DEM-FEM Method

Author:

Li Bailong1,Wang Changming1ORCID,Li Yanying2,Liu Yiao1ORCID,Jiang Nan1,Liang Zhu1,Khan Kaleem Ullah Jan1

Affiliation:

1. College of Construction Engineering, Jilin University, 130021 Changchun, China

2. College of Civil Engineering, Jilin Jianzhu University, 130000 Changchun, China

Abstract

Based on the coupled SPH-DEM-FEM numerical method, this paper analyzes the dynamic interaction of solid debris flow particle-liquid debris flow slurry-retaining dam in order to explore the dynamic response of retaining dam under the impact of the solid-liquid two-phase debris flow and delves into the process of the debris flow impact on the dam, the impact force of debris flow, and the elastic-plastic time-history characteristics of the dam under different slopes of trapezoidal grooves. The calculation results show that the coupled SPH-DEM-FEM method can vividly simulate the impact behavior of the solid-liquid two-phase debris flow on the dam, reproduce the impact, climbing, and siltation in the process of the debris flow impact; the dynamic time-history curve of the retaining dam is consistent with the law of the literature, and the result of the debris flow impact force obtained is close to that of the empirical formula. Moreover, this paper studies the impact force distribution of the debris flow impact process. The results have a certain reference value for the study of the dynamic response of the retaining dam under the impact of the solid-liquid two-phase debris flow and the engineering design of the debris flow-retaining dam.

Funder

Graduate Innovation Fund of Jilin University

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3