Vibration Reduction Performance of Structures with Viscous Dampers under Near-Field Earthquakes

Author:

Lin Jianguang1ORCID

Affiliation:

1. Fujian Provincial Institute of Architectural Design and Research Co., Ltd, Fuzhou 350001, China

Abstract

Near-field pulse-type ground motions (NPGMs) are characterized by a high-energy pulse with large peak ground velocities and accelerations and need further studies to confirm whether structures with viscous dampers (VDs) are still applicable and effective for this type of ground motions. In this article, the vibration reduction performance of structures with VDs under near-field earthquakes is investigated systematically. Displacement and acceleration spectra are developed for a single-degree-of-freedom (SDOF) structure with and without VDs, while these influence factors, such as the nonlinear characteristic of structure, damper supports’ flexibility, and damper parameters, are considered. Additionally, the frequency domain characteristics of NPGM and the energy distribution of a multidegree-of-freedom (MDOF) structure with VDs are discussed to further reveal the action mechanism of NPGM on the structure. It is shown that the structure with VDs shows remarkable seismic reduction effect under the action of near-fault pulse-type earthquake, and the maximum interstorey drift decreased from 0.086 to 0.037 when the structure is equipped with VDs. However, the structure may still be difficult to completely dissipate the high-energy generated by the earthquake pulse with a high pulse period in a short time, which can cause the structure to be damaged or even collapsed in a moment.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3