Biochemical Composition Variation among Southern Ethiopian Arabica Coffee (Coffea arabica L.) Genotypes

Author:

Degefa Meseret1ORCID,Alamerew Sentayehu2,Mohammed Ali2,Gemechu Adeba2

Affiliation:

1. Awada Agricultural Research Sub-Center, P. O. Box 205, Yirgalema, Ethiopia

2. Jimma University, College of Agriculture and Veterinary Medicine, P. O. Box 307, Jimma, Ethiopia

Abstract

Coffee (Coffea arabica L.) provides several health benefits to users due to its strong medicinal and nutritional properties and caloric value. Green bean proximate composition diversity is unknown among the coffee genotypes now cultivated in southern Ethiopia. The study’s major goals are to determine the variability in green bean proximate composition among coffee genotypes and to see if there are any relationships between green bean proximate attributes. Therefore, a nutritional laboratory experiment was carried out at Jimma University College of Agriculture and Veterinary Medicine (JUCAVM). Using the augmented design, a total of 104 entries were examined, including 100 accessions from southern Ethiopia and four standard checks. Each accession had data on 07 proximate composition parameters of green beans. The presence of significant ( P < 0.05 ) differences among the examined accessions for most of the traits considered was revealed by analysis of variance, and a wide range of variation was detected for several traits, indicating that the coffee germplasm accessions have high genetic variability. According to the findings, coffee beans have crude protein (6.93 to 10.14%), total lipids (8.89 to 16.08%), crude ash (2.51–5.47%), crude fiber (6.79–22.25%), dry matter (89.08 to 91.63%), carbohydrate (40.65 to 59.38%), and caloric value (307.39–382.77 k/calories). One hundred four arabica coffee accessions were grouped into ten distinct groups by 20 (19.23%), 21 (20.19%), 39 (37.50%), 12 (11.54%), 04 (3.85%), 03 (2.88%), 02 (1.92%), 01 (0.96%), 01 (0.96%), and 01 (0.96%). The majority of intercluster distances were significantly varied, showing that diversity exists that can be utilized through selection and hybridization. Clusters III and X had the greatest intercluster distance (D2 = 344.16), followed by clusters II and X (D2 = 236.33), VII and X (D2 = 199.04), and clusters VI and I (D2 = 106.25). Clusters I and IV had the smallest intercluster distance (D2 = 10.09), followed by II and IV (D2 = 10.66), and I and VI (D2 = 11.03). The first three principal components with eigenvalues larger than one explained 71.84% of the overall variation. In general, genotypes differed in green bean proximate composition and might be used as gene sources to generate future green bean varieties with appropriate biochemical composition.

Publisher

Hindawi Limited

Subject

Agronomy and Crop Science

Reference31 articles.

1. Concepts of price fairness: empirical research into the Dutch coffee market

2. Some biochemical compounds in coffee beans and methods developed for their analysis;B. Abebe;International Journal of the Physical Sciences,2011

3. “Multi variate analysis phenotypic diversity of (Coffea arabica L).” Coffee Diversity and Knowledge;M. Kebede,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3