Enhanced Thermoelectric Efficiency of Cement-Based Materials with Cuprous Oxide for Sustainable Buildings

Author:

Ji Tao1ORCID,Zhang Shiping1ORCID,He Yan2,Zhang Xiong3,Li Weihua4

Affiliation:

1. School of Architecture and Civil Engineering, Nanjing Institute of Technology, Nanjing 211167, China

2. School of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011, China

3. School of Materials Science and Engineering, Tongji University, Shanghai 201804, China

4. School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China

Abstract

The thermoelectric effect of plain cement paste is usually weak. To improve the thermoelectric performance of cement composites, functional components, such as carbon fibers, steel fibers, carbon nanotubes, and graphene, are often added to cement paste. In view of the advantage of metal oxides with a higher band gap, pure cuprous oxide crystals with different particle sizes were synthesized by a hydrothermal method and incorporated into the cement matrix to improve the thermoelectric efficiency of cement composites in this study. Pure cuprous oxide crystals with different particle sizes (15 μm, 1.5 μm, and 100 nm) were prepared by controlling the reaction temperature and time, pH value, amount of reducing agent, and polyvinylpyrrolidone in the reaction system. The Seebeck coefficient, electrical conductivity, and thermal conductivity of the cement composites with 5.0 wt.% nanostructured Cu2O powder increased to 3966 ± 54 μV/K, (2.68 ± 0.12) × 10−4 S/m, and 0.69 ± 0.007 W/(m·K), respectively. Thereby, a high figure of merit value of 1.93 × 10−6 was obtained for the cement composites, which made future application of cement composites in energy harvesting for buildings possible.

Funder

Science Foundation of Nanjing Institute of Technology

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3