Effect of Defocusing Distance on Microstructural, Hardness, and Tribological Behavior of Ni-Cr-Si-B-C Powder Deposit on 316LN Austenitic Stainless Steel Substrate Using Laser Hard-Facing

Author:

Gnanasekaran S.1ORCID,Padmanaban G.2,Chelladurai Samson Jerold Samuel3ORCID,Tibebu Solomon4ORCID

Affiliation:

1. Department of Mechanical Engineering, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India

2. Centre for Materials Joining & Research (CEMAJOR), Department of Manufacturing Engineering, Annamalai University, Annamalainagar 608002, Tamil Nadu, India

3. Department of Mechanical Engineering, Sri Krishna College of Engineering and Technology, Kuniamuthur, Coimbatore 641008, India

4. Department of Environmental Engineering, College of Engineering, Sustainable Energy Center of Excellence, Bioprocess and Biotechnology Center of Excellence, Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, 16417 Addis Ababa, Ethiopia

Abstract

The Ni-based alloy powder has been melted and bonded to an AISI 316LN austenitic stainless steel (ASS) base material (substrate) using a high-energy disc laser with a maximum power of up to 12 kW. The substrate’s hard-faced reservoir is highly diluted due to the significant difference in melting temperature between the substrate and the commonly used Ni-based alloy. The hardness, macrostructure, microstructure, and wear resistance effects of the defocusing distance were examined. The composition, microstructure, hardness, and wear resistance of phases have been examined with a pin-on-disk wear test, an energy dispersion spectroscopy (EDS), a scanning electron microscope (SEM), and X-ray diffraction (XRD). According to the findings, the height and diameter of the beads rose when the distance was increased from 17 mm to 37 mm. On the other hand, penetration and dilution decreased from 3.7 mm to 2.7 mm and from 9.7% to 3.1%, respectively. When the defocusing length is increased and the penetration profundity and dilution are limited, the density of energy per unit clad is accessible. The laser hard-faced surfaces contain microstructures of Ni-rich solid solution, boride, and carbide. These different factors cause higher hardness and resistance to wear.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3