Biomechanical Effects of Aspect Ratio of the Knee during Outside-In Anterior Cruciate Ligament Reconstruction Surgery

Author:

Bae Tae Soo1ORCID,Cho Byeong Chan1,Kwak Dai-Soon2ORCID

Affiliation:

1. Department of Biomedical Engineering, Jungwon University, 85, Munmu-ro, Goesan-eup, Goesan-gun, Chungcheongbuk-do 28024, Republic of Korea

2. Catholic Institute for Applied Anatomy, Department of Anatomy, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea

Abstract

We analyzed tunnel length, graft bending angle, and stress of the graft according to tunnel entry position and aspect ratio (ASR: ratio of anteroposterior depth to mediolateral width) of the articular surface for the distal femur during single-bundle outside-in anterior cruciate ligament reconstruction (ACLR) surgery. We performed multiflexible body dynamic analyses with four ASR (98, 105, 111, and 117%) knee models. The various ASRs were associated with approximately 1 mm changes in tunnel length. The graft bending angle increased when the entry point was far from the lateral epicondyle and was larger when the ASR was smaller. The graft was at maximum stress, 117% ASR, when the tunnel entry point was near the lateral epicondyle. The maximum stress value at a 5 mm distance from the lateral epicondyle was 3.5 times higher than the 15 mm entry position, and the cases set to 111% and 105% ASR showed 1.9 times higher stress values when at a 5 mm distance compared with a 15 mm distance. In the case set at 98% ASR, the low-stress value showed a without-distance difference from the lateral epicondyle. Our results suggest that there is no relationship between the ASR and femoral tunnel length. A smaller ASR causes a higher graft bending angle, and a larger ASR causes greater stress in the graft.

Funder

Ministry of Education

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3