Role of Resveratrol on Indoxyl Sulfate-Induced Endothelial Hyperpermeability via Aryl Hydrocarbon Receptor (AHR)/Src-Dependent Pathway

Author:

Assefa Eskedar Getachew123,Yan Qiaoqiao1,Gezahegn Siameregn Berhe4,Salissou Maibouge Tanko Mahamane5,He Shuiqing1ORCID,Wu Nannan1,Zuo Xuezhi3ORCID,Ying Chenjiang16ORCID

Affiliation:

1. Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

2. Department of Food Science and Applied Nutrition, Addis Ababa Science and Technology University, P.O. Box 16417, Ethiopia

3. Department of Clinical Nutrition, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China

4. Sport Science Academy, Kotebe Metropolitan University, Addis Ababa, Ethiopia

5. Department of Pathology Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

6. Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

Abstract

Resveratrol (RES), a dietary polyphenol compound, has been shown to possess health benefits due to its anti-inflammatory, antioxidative, and antiatherosclerosis properties. Tryptophan metabolite-derived indoxyl sulfate (IS) is identified as one of the uremic toxins and physiological endogenous ligand/activator of aryl hydrocarbon receptor (AHR), associated with atherosclerosis in chronic kidney disease (CKD) patients. Studies have shown that a high serum level of IS causes deleterious effects on health primarily by inducing oxidative stress and endothelial dysfunction. However, the precise mechanisms are still unclear. Here, we investigated the underlying mechanism of IS effect on endothelial permeability and the role of RES on IS-induced endothelial hyperpermeability via the AHR/Src-dependent pathway. Bovine aorta endothelial cells (BAECs) were cultured and incubated with IS in the presence or absence of RES, and transendothelial electrical resistance (TEER) and permeability of cells were measured. Alongside, AHR, Src kinase, and Vascular Endothelial Cadherin (VE-Cadherin) activation were examined. Our data showed that IS reduced TEER of cells resulting in increased permeability. VE-Cadherin, a vital regulator of endothelial permeability, was also significantly activated in response to IS, which appeared to be associated with changes of endothelial permeability and AHR/Src kinase. Interestingly, in this setting, RES reversed the effect of IS and inhibited the increased activation of Src induced by IS-activated AHR and modulated VE-Cadherin and permeability. CH223191, an inhibitor of AHR, significantly inhibits IS-induced endothelial hyperpermeability. Further analysis with treatment of PP2, an inhibitor of Src abolishing Src activation, suggests downstream factors. All our data indicated that IS upregulated the AHR/Src kinase pathway, and increased endothelial permeability and phosphorylation of VE-Cadherin may be represented and provide new strategies for addressing protective properties of RES against Src kinase involved in AHR-mediated endothelial hyperpermeability. The findings may be crucial for managing diseases in which endothelial permeability is compromised, and the dietary polyphenols are involved.

Funder

Huazhong University of Science and Technology

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3