Mg-Al Mixed Oxide Adsorbent Synthesized Using FCT Template for Fluoride Removal from Drinking Water

Author:

Liu Jifa1,Zhao Ping1ORCID,Xu Yue1,Jia Xibin1

Affiliation:

1. Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics of Shandong Provincial, School of Materials Science and Engineer, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

Abstract

To make full use of natural waste, a novel Mg-Al mixed oxide adsorbent was synthesized by the dip-calcination method using the fluff of the chinar tree (FCT) and an Mg(II) and Al(III) chloride solution as raw materials. The adsorbents were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The effects of the Mg/Al molar ratio and calcination temperature on the performance of the novel Mg-Al mixed oxide adsorbent were investigated. The optimized Mg-Al mixed oxide adsorbent had a Langmuir adsorption capacity of 53 mg/g. This adsorption capacity was higher than that of the separate Mg oxide and Al oxide. The synergy between Mg and Al is beneficial to the adsorption performance of the material. The fluoride adsorption capacity of the optimized Mg-Al mixed oxide adsorbent is only slightly affected by ions such as Cl, NO3, SO42−, Na+, and K+and is excellent for use in recycling and real water. The hydroxyl groups on the surface of the Mg-Al mixed oxide adsorbent play a key role in the adsorption of fluorine. The as-obtained novel Mg-Al mixed oxide adsorbent is an efficient and environmentally friendly agent for fluoride removal from drinking water.

Funder

Natural Science Foundation of Shandong Province

Publisher

Hindawi Limited

Subject

Inorganic Chemistry,Organic Chemistry,Biochemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3