A Cloud-Assisted Region Monitoring Strategy of Mobile Robot in Smart Greenhouse

Author:

Li Xiaomin1ORCID,Ma Zhiyu1ORCID,Chu Xuan1,Liu Yongxin2

Affiliation:

1. College of Mechanical and Electrical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, China

2. Department of Electrical, Computer Software and Systems Engineering, Embry-Riddle Aeronautical University, Oklahoma, OK, USA

Abstract

In smart agricultural systems, the macroinformation sensing by adopting a mobile robot with multiple types of sensors is a key step for sustainable development of agriculture. Also, in a region monitoring strategy that meets the real-scene requirements, optimal operation of mobile robots is necessary. In this paper, a cloud-assisted region monitoring strategy of mobile robots in a smart greenhouse is presented. First, a hybrid framework that contains a cloud, a wireless network, and mobile multisensor robots is deployed to monitor a wide-region greenhouse. Then, a novel strategy that contains two phases is designed to ensure valid region monitoring and meet the time constraints of a mobile sensing robot. In the first phase, candidate region monitoring points are selected using the improved virtual forces. In the second phase, a moving path for the mobile node is calculated based on Euclidean distance. Subsequently, the applicability of the proposed strategy is verified by the greenhouse test system. The verification results show that the proposed algorithm has better performance than the conventional methods. The results also demonstrate that, by applying the proposed algorithm, the number of monitoring points and time consumption can reduce, while the valid monitoring region area is enlarged.

Funder

Guangdong Science and Technology Department

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3