Comparing Dynamic User Equilibrium and Noniterative Stochastic Route Choice in a Simulation-Based Dynamic Traffic Assignment Model: Practical Considerations for Large-Scale Networks

Author:

Ashfaq Mudabber1,Gu Ziyuan2ORCID,Waller S. Travis1ORCID,Saberi Meead1ORCID

Affiliation:

1. Research Centre for Integrated Transport Innovation (rCITI), School of Civil and Environmental Engineering, University of New South Wales (UNSW), Sydney, Australia

2. Jiangsu Key Laboratory of Urban ITS, Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, School of Transportation, Southeast University, Nanjing 210096, China

Abstract

Simulation-based dynamic traffic assignment (DTA) models play a vital role in transportation planning and operations. While the widely studied equilibrium-seeking DTA including dynamic user equilibrium (DUE) often provides robust and consistent outcomes, their expensive computational cost for large-scale network applications has been a burden in practice. The noniterative stochastic route choice (SRC) model, as a nonequilibrium seeking DTA model, provides an alternative for specific transportation operations applications that may not require equilibrium results after all (e.g., evacuation and major network disruptions) and thus tend to be computationally less expensive, yet may suffer from inconsistent outcomes. While DUE is a widely accepted approach for many strategic planning applications, SRC has been increasingly used in practice for traffic operations purposes. This paper aims to provide a comparative and quantitative analysis of the two modeling approaches. Specifically, a comparison has been made at two levels: link-level flows and network-level congestion patterns. Results suggest that adaptive driving improves the quality of the SRC solution, but its difference from DUE still remains significant at the link level. Results have practical implications for the application of large-scale simulation-based DTA models for planning and operations purposes.

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3