A Methodology to Determine the Subset of Heuristics for Hyperheuristics through Metalearning for Solving Graph Coloring and Capacitated Vehicle Routing Problems

Author:

Ortiz-Aguilar Lucero1ORCID,Carpio Martín1ORCID,Rojas-Domínguez Alfonso1ORCID,Ornelas-Rodriguez Manuel1ORCID,Puga-Soberanes H. J.1ORCID,Soria-Alcaraz Jorge A.2ORCID

Affiliation:

1. Tecnológico Nacional de México, Instituto Tecnológico de León, Guanajuato, Mexico

2. Department of Organizational Studies, University of Guanajuato, Guanajuato, Mexico

Abstract

In this work, we focus on the problem of selecting low-level heuristics in a hyperheuristic approach with offline learning, for the solution of instances of different problem domains. The objective is to improve the performance of the offline hyperheuristic approach, identifying equivalence classes in a set of instances of different problems and selecting the best performing heuristics in each of them. A methodology is proposed as the first step of a set of instances of all problems, and the generic characteristics of each instance and the performance of the heuristics in each one of them are considered to define the vectors of characteristics and make a grouping of classes. Metalearning with statistical tests is used to select the heuristics for each class. Finally, we used the Naive Bayes to test the set instances with k-fold cross-validation, and we compared all results statistically with the best-known values. In this research, the methodology was tested by applying it to the problems of capacitated vehicle routing (CVRP) and graph coloring (GCP). The experimental results show that the proposed methodology can improve the performance of the offline hyperheuristic approach, correctly identifying the classes of instances and applying the appropriate heuristics in each case. This is based on the statistical comparison of the results obtained with those of the state of the art of each instance.

Funder

Tecnológico Nacional de México

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3