Hydrogeochemistry and Groundwater Quality Assessment in the High Agri Valley (Southern Italy)

Author:

Paternoster M.12ORCID,Buccione R.1ORCID,Canora F.3ORCID,Buttitta D.1ORCID,Panebianco S.14ORCID,Rizzo G.1ORCID,Sinisi R.4ORCID,Summa V.4ORCID,Mongelli G.14ORCID

Affiliation:

1. Department of Sciences, University of Basilicata, Vialedell’AteneoLucano 10, Campus Macchia Romana, 85100 Potenza, Italy

2. National Institute of Geophysics and Volcanology (INGV), Section of Palermo, 90153 Palermo, Italy

3. School of Engineering, University of Basilicata, Viale dell’Ateneo Lucano 10, Campus Macchia Romana, 85100 Potenza, Italy

4. National Research Council, Institute of Methodologies for Environmental Analysis (CNR-IMAA), 85050 Tito Scalo (PZ), Italy

Abstract

The High Agri Valley (southern Italy) is one of the largest intermontane basin of the southern Apennines affected by intensive agricultural and industrial activities. The study of groundwater chemical features provides much important information useful in water resource management. In this study, hydrogeochemical investigations coupled with multivariate statistics, saturation indices, and stable isotope composition (δD and δ18O) were conducted in the High Agri Valley to determine the chemical composition of groundwater and to define the geogenic and anthropogenic influences on groundwater quality. Twenty-four sampling point ( including well and spring waters) have been examined. The isotopic data revealed that groundwater has a meteoric origin. Well waters, located on recent alluvial-lacustrine deposits in shallow porous aquifers at the valley floor, are influenced by seasonal rainfall events and show shallow circuits; conversely, spring waters from fissured and/or karstified aquifers are probably associated to deeper and longer hydrogeological circuits. The R -mode factor analysis shows that three factors explain 94% of the total variance, and F1 represents the combined effect of dolomite and silicate dissolution to explain most water chemistry. In addition, very low contents of trace elements were detected, and their distribution was principally related to natural input. Only two well waters, used for irrigation use, show critical issue for NO3- concentrations, whose values are linked to agricultural activities. Groundwater quality strongly affects the management of water resources, as well as their suitability for domestic, agricultural, and industrial uses. Overall, our results were considered fulfilling the requirements for the inorganic component of the Water Framework Directive and Italian legislation for drinking purposes. The water quality for irrigation is from “good to permissible” to “excellent to good” although salinity and relatively high content of Mg2+ can occasionally be critical.

Funder

Italian PRIN-MIUR programme

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3