Affiliation:
1. Civil Engineering Department, Istanbul Technical University, Istanbul, Turkey
Abstract
This research investigated the changes in vibration characteristics of a simple reinforced concrete (RC) frame subjected to incremental cyclic pushover testing as a basis for detection, quantification, and localization of damage in RC frames using vibration data obtained before and after a seismic event. A half-scale one-story one-bay plane frame was subjected to progressive damage through cyclic lateral loading to incrementally increasing drift ratios. Ambient and impact vibration tests were performed at each increment of drift ratio, and modal analyses of the acceleration responses obtained at seven locations on the frame were carried out with the acceleration responses measured at seven different locations on the frame to track changes in the dynamic characteristics. Linear degradation of the lowest two vibration frequencies was identified with increasing drift ratio, which was regarded as a promising result towards detection and quantification of damage. For localization, a flexibility-based damage localization procedure, the damage locating vector (DLV) approach, was explored. Localization results mostly agreed with the observed damage, and the approach was found to have potential for use in prioritizing the suspected damage locations in the structure for detailed inspections.
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献