Two-Level Multimodal Fusion for Sentiment Analysis in Public Security

Author:

Sun Jianguo1ORCID,Yin Hanqi1ORCID,Tian Ye1ORCID,Wu Junpeng1ORCID,Shen Linshan1ORCID,Chen Lei2

Affiliation:

1. College of Computer Science and Technology, Harbin Engineering University, Harbin, Heilongjiang 150001, China

2. College of Engineering and Computing, Georgia Southern University, Statesboro, GA 30458, USA

Abstract

Large amounts of data are widely stored in cyberspace. Not only can they bring much convenience to people’s lives and work, but they can also assist the work in the information security field, such as microexpression recognition and sentiment analysis in the criminal investigation. Thus, it is of great significance to recognize and analyze the sentiment information, which is usually described by different modalities. Due to the correlation among different modalities data, multimodal can provide more comprehensive and robust information than unimodal in data analysis tasks. The complementary information from different modalities can be obtained by multimodal fusion methods. These approaches can process multimodal data through fusion algorithms and ensure the accuracy of the information used for subsequent classification or prediction tasks. In this study, a two-level multimodal fusion (TlMF) method with both data-level and decision-level fusion is proposed to achieve the sentiment analysis task. In the data-level fusion stage, a tensor fusion network is utilized to obtain the text-audio and text-video embeddings by fusing the text with audio and video features, respectively. During the decision-level fusion stage, the soft fusion method is adopted to fuse the classification or prediction results of the upstream classifiers, so that the final classification or prediction results can be as accurate as possible. The proposed method is tested on the CMU-MOSI, CMU-MOSEI, and IEMOCAP datasets, and the empirical results and ablation studies confirm the effectiveness of TlMF in capturing useful information from all the test modalities.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-modal Sentiment Analysis of Mongolian Language based on Pre-trained Models and High-resolution Networks;2024 International Conference on Asian Language Processing (IALP);2024-08-04

2. A Review of Key Technologies for Emotion Analysis Using Multimodal Information;Cognitive Computation;2024-06-01

3. Explainable Multimodal Sentiment Analysis on Bengali Memes;2023 26th International Conference on Computer and Information Technology (ICCIT);2023-12-13

4. Multimodal sentiment analysis: A survey;Displays;2023-12

5. Evaluating significant features in context‐aware multimodal emotion recognition with XAI methods;Expert Systems;2023-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3