EEG Signal Classification Using Manifold Learning and Matrix-Variate Gaussian Model

Author:

Zhu Lei1ORCID,Hu Qifeng1,Yang Junting1,Zhang Jianhai1,Xu Ping1,Ying Nanjiao1

Affiliation:

1. School of Automation, Hangzhou Dianzi University, Hangzhou 310000, China

Abstract

In brain-computer interface (BCI), feature extraction is the key to the accuracy of recognition. There is important local structural information in the EEG signals, which is effective for classification; and this locality of EEG features not only exists in the spatial channel position but also exists in the frequency domain. In order to retain sufficient spatial structure and frequency information, we use one-versus-rest filter bank common spatial patterns (OVR-FBCSP) to preprocess the data and extract preliminary features. On this basis, we conduct research and discussion on feature extraction methods. One-dimensional feature extraction methods like linear discriminant analysis (LDA) may destroy this kind of structural information. Traditional manifold learning methods or two-dimensional feature extraction methods cannot extract both types of information at the same time. We introduced the bilinear structure and matrix-variate Gaussian model into two-dimensional discriminant locality preserving projection (2DDLPP) algorithm and decompose EEG signals into spatial and spectral parts. Afterwards, the most discriminative features were selected through a weight calculation method. We tested the method on BCI competition data sets 2a, data sets IIIa, and data sets collected by our laboratory, and the results were expressed in terms of recognition accuracy. The cross-validation results were 75.69%, 70.46%, and 54.49%, respectively. The average recognition accuracy of new method is improved by 7.14%, 7.38%, 4.86%, and 3.8% compared to those of LDA, two-dimensional linear discriminant analysis (2DLDA), discriminant locality property projections (DLPP), and 2DDLPP, respectively. Therefore, we consider that the proposed method is effective for EEG classification.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference35 articles.

1. Interfacing brain and computer in neurorehabilitation;D. Mattia

2. Brain Computer Interfaces, a Review

3. Event-related EEG/MEG synchronization and desynchronization: basic principles

4. EEG signal with feature extraction using SVM and ICA classifiers;P. N. Kumar

5. A comparison of PCA, ICA and LDA in EEG signal classification using SVM;M. I. Gursoy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3