Investigation of Low-Frequency Sound Radiation Characteristics and Active Control Mechanism of a Finite Cylindrical Shell

Author:

Ding Shaohu1ORCID,Mu Chunyang1,Gao Yang1,Liu Hong1,Li Maoqiang1

Affiliation:

1. College of Mechatronic Engineering, North MinZu University, Yinchuan, China

Abstract

In this paper, the radiation characteristics and active structural acoustic control of a submerged cylindrical shell at low frequencies are investigated. First, the coupled vibro-acoustic equations for a submerged finite cylindrical shell are solved by a modal decomposition method, and the radiation impedance is obtained by the fast Fourier transform. The modal shapes of the first ten acoustic radiation modes and the structure-dependent radiation modes are presented. The relationships between the vibration modes and the radiation modes as well as the contributions of the radiation modes to the radiated sound power are given at low frequencies. Finally, active structural acoustic control of a submerged finite cylindrical shell is investigated by considering the fluid-structure coupled interactions. The physical mechanism of the active control is discussed based on the relationship between the vibration and radiation modes. The results showed that, at low frequencies, only the first several radiation modes contributed to the sound power radiated from a submerged finite cylindrical shell excited by a radial point force. By determining the radiation modes that dominate the contribution to the radiated sound, the physical mechanism of the active control is explained, providing a potential tool to allow active control of the vibro-acoustic responses of submerged structures more effectively.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3