Optimal Length of Heart Rate Variability Data and Forecasting Time for Ventricular Fibrillation Prediction Using Machine Learning

Author:

Jeong Da Un1ORCID,Taye Getu Tadele2,Hwang Han-Jeong3,Lim Ki Moo14ORCID

Affiliation:

1. Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea

2. Health Informatics Units, School of Public Health, Mekelle University, Mekelle, Ethiopia

3. Department of Electronics and Information Engineering, Korea University, Sejong, Republic of Korea

4. Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea

Abstract

Ventricular fibrillation (VF) is a cardiovascular disease that is one of the major causes of mortality worldwide, according to the World Health Organization. Heart rate variability (HRV) is a biomarker that is used for detecting and predicting life-threatening arrhythmias. Predicting the occurrence of VF in advance is important for saving patients from sudden death. We extracted features from seven HRV data lengths to predict the onset of VF before nine different forecast times and observed the prediction accuracies. By using only five features, an artificial neural network classifier was trained and validated based on 10-fold cross-validation. Maximum prediction accuracies of 88.18% and 88.64% were observed at HRV data lengths of 10 and 20 s, respectively, at a forecast time of 0 s. The worst prediction accuracy was recorded at an HRV data length of 70 s and a forecast time of 80 s. Our results showed that features extracted from HRV signals near the VF onset could yield relatively high VF prediction accuracies.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3