Nonlinear All-Optical Diffractive Deep Neural Network with 10.6 μm Wavelength for Image Classification

Author:

Sun Yichen1,Dong Mingli1ORCID,Yu Mingxin1ORCID,Xia Jiabin1,Zhang Xu1,Bai Yuchen1,Lu Lidan1,Zhu Lianqing1

Affiliation:

1. Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing 100016, China

Abstract

A photonic artificial intelligence chip is based on an optical neural network (ONN), low power consumption, low delay, and strong antiinterference ability. The all-optical diffractive deep neural network has recently demonstrated its inference capabilities on the image classification task. However, the size of the physical model does not have miniaturization and integration, and the optical nonlinearity is not incorporated into the diffraction neural network. By introducing the nonlinear characteristics of the network, complex tasks can be completed with high accuracy. In this study, a nonlinear all-optical diffraction deep neural network (N-D2NN) model based on 10.6 μm wavelength is constructed by combining the ONN and complex-valued neural networks with the nonlinear activation function introduced into the structure. To be specific, the improved activation function of the rectified linear unit (ReLU), i.e., Leaky-ReLU, parametric ReLU (PReLU), and randomized ReLU (RReLU), is selected as the activation function of the N-D2NN model. Through numerical simulation, it is proved that the N-D2NN model based on 10.6 μm wavelength has excellent representation ability, which enables them to perform classification learning tasks of the MNIST handwritten digital dataset and Fashion-MNIST dataset well, respectively. The results show that the N-D2NN model with the RReLU activation function has the highest classification accuracy of 97.86% and 89.28%, respectively. These results provide a theoretical basis for the preparation of miniaturized and integrated N-D2NN model photonic artificial intelligence chips.

Funder

Beijing Municipal Education Commission

Publisher

Hindawi Limited

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference44 articles.

1. ImageNet classification with deep convolutional neural networks;A. Krizhevsky

2. Learning phrase representations using RNN encoder-decoder for statistical machine translation;K. Cho

3. Speech recognition with deep recurrent neural networks;A. Graves

4. Deep learning

5. Optical implementation of the Hopfield model

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3