Multi-channel Convolutional Neural Network Feature Extraction for Session Based Recommendation

Author:

Ji Zhenyan1ORCID,Wu Mengdan1ORCID,Feng Yumin1ORCID,Armendáriz Íñigo José Enrique2ORCID

Affiliation:

1. School of Software Engineering, Beijing Jiaotong University, Beijing 100044, China

2. Department of Statistics, Computer Science and Mathematics, Public University of Navarre, Pamplona 31006, Spain

Abstract

A session-based recommendation system is designed to predict the user’s next click behavior based on an ongoing session. Existing session-based recommendation systems usually model a session into a sequence and extract sequence features through recurrent neural network. Although the performance is greatly improved, these procedures ignore the relationships between items that contain rich information. In order to obtain rich items embeddings, we propose a novel Recommendation Model based on Multi-channel Convolutional Neural Network for session-based recommendation, RMMCNN for brevity. Specifically, we capture items' internal features from three dimensions through multi-channel convolutional neural network firstly. Next, we merge the internal features with external features obtained by a GRU unit. Then, both internal features and external features are merged by an attention mechanism together as the input of the transformation function. Finally, the probability distribution is taken as the output after the softmax function. Experiments on various datasets show that our method's precision and recommendation performance are better than those of other state-of-the-art approaches.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid/Advanced Session-Based Recommender Systems;Session-Based Recommender Systems Using Deep Learning;2023-12-21

2. A Hybrid CNN-GRU model for Session-based Recommender Systems;2023 9th International Conference on Computer and Communications (ICCC);2023-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3