Household Electricity Load Forecasting Based on Multitask Convolutional Neural Network with Profile Encoding

Author:

Wang Mingxin1ORCID,Zheng Yingnan2ORCID,Wang Binbin2ORCID,Deng Zhuofu2ORCID

Affiliation:

1. College of Water Conservancy, ShenYang Agricultural University, Shenyang 110866, China

2. College of Software, Northeastern University, Shenyang 110004, China

Abstract

Household load forecasting provides great challenges as a result of high uncertainty in individual consumption of load profile. Traditional models based on machine learning tried to explore uncertainty depending on clustering, spectral analysis, and sparse coding with hand craft features. Recently, deep learning skills like recurrent neural network attempt to learn the uncertainty with one-hot encoding which is too simple and not efficient. In this paper, for the first time, we proposed a multitask deep convolutional neural network for household load forecasting. The baseline of one branch is built on multiscale dilated convolutions for load forecasting. The other branch based on deep convolutional autoencoder is responsible for household profile encoding. In addition, an efficient encoding strategy for household profile is designed that serves a novel feature fusion mechanism integrated into forecasting branch. Our proposed network serves an end-to-end manner in training and inference process. Sufficient ablation studies were conducted to demonstrate effectiveness of innovations and great generalization in point and probabilistic load forecasting at household level, which provides a promising prospect in demand response.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference71 articles.

1. Renewable energy basing on smart grid;Z. Li

2. Demand response and smart grids—A survey

3. Building a smarter smart grid through better renewable energy information;C. W. Potter

4. Effective business models for demand response under the smart grid paradigm;A. Vos

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3