Stability Analysis of Irregular Cavities in Tunnel Using Geomagic-COMSOL Coupling Method

Author:

Sun Shangqu1ORCID,Qin Chengshuai2,Wang Hongbo1ORCID,Li Liping3,Huang Yongliang4

Affiliation:

1. Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and Mitigation, Shandong University of Science and Technology, Qingdao 266590, Shandong, China

2. Research Center of Geotechnical and Structural Engineering, School of Qilu Transportation, Shandong University, Jinan, China

3. Research Center of Geotechnical and Structural Engineering, Shandong University, Jinan, China

4. Jinan Rail Transit Group Co., Ltd., Jinan 250014, Shandong, China

Abstract

The erosion of soluble rock and transformation of groundwater result in the high irregularity of cavities in tunnel. At present, however, karst cavities are mainly simplified as circular, rectangular, or elliptical shape in the numerical simulation. The purpose of this paper is to propose a new method to analyze the stability of irregular cavities. First of all, we used the drilling laser scanning method to reconstruct the three-dimensional point clouds model of irregular cavities. Furthermore, we proposed the method of determining the point density to reduce the computational error under the premise of ensuring the accuracy in engineering scale. We also developed the Geomagic-COMSOL coupling numerical method to conduct the stability analysis of irregular cavities. The results demonstrated that the geometrical shape of karst cavities has great effects on the deformation and mechanical properties of the surrounding rock. The displacement and equivalent plastic strain of simplified cavities exhibited symmetric characteristics, while those of irregular cavities are highly randomly distributed. We noted that a greater displacement value and more intensive plastic strain can be triggered by irregular cavities shape, compared with the simplified cavity shape. The results also showed that the larger displacement occurred at the long-edge part, while the plastic zone was concentrated at the sharp turning angle of the irregular cavities.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3