Experimental Study on Seepage Anisotropy of a Hexagonal Columnar Jointed Rock Mass

Author:

He Yanxin12ORCID,Zhu Zhende12,Lu Wenbin12ORCID,Tian Yuan12,Xie Xinghua3,Wang Sijing14

Affiliation:

1. Key Laboratory of Ministry of Education of Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China

2. Jiangsu Research Center for Geotechnical Engineering, Hohai University, Nanjing 210098, China

3. Nanjing Hydraulic Research Institute, Nanjing 210029, China

4. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Abstract

Many columnar jointed rock masses (basalt) are present at the Baihetan hydropower dam site, and their seepage characteristics have a significant impact on the project’s safety and stability. In this study, model samples consisting of material similar to the columnar jointed rock mass with different inclination angles (0°–90°) were prepared and laboratory triaxial seepage tests were performed to study the seepage characteristics of the columnar jointed rock mass under maximum axial principal stress. The experimental results showed that the similar material model samples of columnar jointed rock mass showed obvious seepage anisotropy. The nonlinear seepage characteristics were well described by the Forchheimer and Izbash equations, and the fitting coefficients of the two equations were in good correspondence. The curves describing the relationship between the inherent permeability and the stress of the samples with different dip angles were U-shaped and L-shaped, and a one-variable cubic equation well described the relationship. The 45° angle specimen had the highest sensitivity to the maximum principal stress, and its final permeability increased by 144.25% compared with the initial permeability. The research results can provide theoretical support for the stability evaluation of the Baihetan hydropower station.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference33 articles.

1. Classification and quality assessment of irregular columnar jointed basaltic rock mass for hydraulic engineering;W. Y. Xu;Journal. Hydraulic Engineering,2011

2. Characteristics of excavation-induced relaxation of columnar jointed basalt in the left bank dam foundation of Baihetan Hydropower station;C. F. Ke;Journal of Yangtze River Scientific Research Institute,2017

3. Rock mass deformation properties of closely jointed basalt;K. Kim;Rock Mechanics,1982

4. Design and construction of a block test in closely jointed rock;M. L. Cramer;International Journal of Rock Mechanics and Mining Sciences,1984

5. Experimental study on the mechanical properties of simulated columnar jointed rock masses

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3