Voice Keyword Retrieval Method Using Attention Mechanism and Multimodal Information Fusion

Author:

Zhang Hongli1ORCID

Affiliation:

1. Department of Educational Technology, Inner Mongolia Normal University, Inner Mongolia, Hohhot 010022, China

Abstract

A cross-modal speech-text retrieval method using interactive learning convolution automatic encoder (CAE) is proposed. First, an interactive learning autoencoder structure is proposed, including two inputs of speech and text, as well as processing links such as encoding, hidden layer interaction, and decoding, to complete the modeling of cross-modal speech-text retrieval. Then, the original audio signal is preprocessed and the Mel frequency cepstrum coefficient (MFCC) feature is extracted. In addition, the word bag model is used to extract the text features, and then the attention mechanism is used to combine the text and speech features. Through interactive learning CAE, the shared features of speech and text modes are obtained and then sent to modal classifier to identify modal information, so as to realize cross-modal voice text retrieval. Finally, experiments show that the performance of the proposed algorithm is better than that of the contrast algorithm in terms of recall rate, accuracy rate, and false recognition rate.

Funder

Key Technology Project of Inner Mongolia Autonomous Region

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Reference29 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3