Automatic Prediction of Recurrence of Major Cardiovascular Events: A Text Mining Study Using Chest X-Ray Reports

Author:

Bagheri Ayoub1ORCID,Groenhof T. Katrien J.2,Asselbergs Folkert W.345,Haitjema Saskia6,Bots Michiel L.2,Veldhuis Wouter B.7,de Jong Pim A.7,Oberski Daniel L.12

Affiliation:

1. Department of Methodology and Statistics, Faculty of Social Sciences, Utrecht University, Utrecht, Netherlands

2. Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands

3. Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands

4. Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK

5. Health Data Research UK, Institute of Health Informatics, University College London, London, UK

6. Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht, Netherlands

7. Department of Radiology, Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, Netherlands

Abstract

Background and Objective. Electronic health records (EHRs) contain free-text information on symptoms, diagnosis, treatment, and prognosis of diseases. However, this potential goldmine of health information cannot be easily accessed and used unless proper text mining techniques are applied. The aim of this project was to develop and evaluate a text mining pipeline in a multimodal learning architecture to demonstrate the value of medical text classification in chest radiograph reports for cardiovascular risk prediction. We sought to assess the integration of various text representation approaches and clinical structured data with state-of-the-art deep learning methods in the process of medical text mining. Methods. We used EHR data of patients included in the Second Manifestations of ARTerial disease (SMART) study. We propose a deep learning-based multimodal architecture for our text mining pipeline that integrates neural text representation with preprocessed clinical predictors for the prediction of recurrence of major cardiovascular events in cardiovascular patients. Text preprocessing, including cleaning and stemming, was first applied to filter out the unwanted texts from X-ray radiology reports. Thereafter, text representation methods were used to numerically represent unstructured radiology reports with vectors. Subsequently, these text representation methods were added to prediction models to assess their clinical relevance. In this step, we applied logistic regression, support vector machine (SVM), multilayer perceptron neural network, convolutional neural network, long short-term memory (LSTM), and bidirectional LSTM deep neural network (BiLSTM). Results. We performed various experiments to evaluate the added value of the text in the prediction of major cardiovascular events. The two main scenarios were the integration of radiology reports (1) with classical clinical predictors and (2) with only age and sex in the case of unavailable clinical predictors. In total, data of 5603 patients were used with 5-fold cross-validation to train the models. In the first scenario, the multimodal BiLSTM (MI-BiLSTM) model achieved an area under the curve (AUC) of 84.7%, misclassification rate of 14.3%, and F1 score of 83.8%. In this scenario, the SVM model, trained on clinical variables and bag-of-words representation, achieved the lowest misclassification rate of 12.2%. In the case of unavailable clinical predictors, the MI-BiLSTM model trained on radiology reports and demographic (age and sex) variables reached an AUC, F1 score, and misclassification rate of 74.5%, 70.8%, and 20.4%, respectively. Conclusions. Using the case study of routine care chest X-ray radiology reports, we demonstrated the clinical relevance of integrating text features and classical predictors in our text mining pipeline for cardiovascular risk prediction. The MI-BiLSTM model with word embedding representation appeared to have a desirable performance when trained on text data integrated with the clinical variables from the SMART study. Our results mined from chest X-ray reports showed that models using text data in addition to laboratory values outperform those using only known clinical predictors.

Funder

EU/EFPIA Innovative Medicines Initiative 2 Joint Undertaking BigData@Heart

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3