Affiliation:
1. College of Big Data and Software Engineering, Zhejiang Wanli University, Ningbo, China
Abstract
Short-time heavy rainfall is a kind of sudden strong and heavy precipitation weather, which seriously threatens people’s life and property safety. Accurate precipitation nowcasting is of great significance for the government to make disaster prevention and mitigation decisions in time. In order to make high-resolution forecasts of regional rainfall, this paper proposes a convolutional 3D GRU (Conv3D-GRU) model to predict the future rainfall intensity over a relatively short period of time from the machine learning perspective. Firstly, the spatial features of radar echo maps with different heights are extracted by 3D convolution, and then, the radar echo maps on time series are coded and decoded by using GRU. Finally, the trained model is used to predict the radar echo maps in the next 1-2 hours. The experimental results show that the algorithm can effectively extract the temporal and spatial features of radar echo maps, reduce the error between the predicted value and the real value of rainfall, and improve the accuracy of short-term rainfall prediction.
Funder
Project of the Science and Plan for Zhejiang Province
Subject
General Engineering,General Mathematics
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献