Distributed Path Planning of Unmanned Aerial Vehicle Communication Chain Based on Dual Decomposition

Author:

Wei Xiaohua1ORCID,Xu Jianliang1

Affiliation:

1. School of Mechanical and Electrical Engineering, Quzhou College of Technology, Quzhou, Zhejiang 324000, China

Abstract

Limited by the insufficiency of single UAV’s load and flight time capabilities, the multi-UAV (unmanned aerial vehicle) collaboration to improve mission efficiency and expand mission functions has become the focus of current UAV theory and application research. In this paper, the research on UAV global path planning is carried out using the ant colony algorithm, and an indoor UAV path planning model based on the ant colony algorithm is constructed. In order to improve the efficiency of the algorithm, enhance the adaptability and robustness of the algorithm, a distributed path planning algorithm based on the dual decomposition UAV communication chain is proposed. This algorithm improves the basic ant colony algorithm from the aspects of path selection, pheromone update, and rollback strategy in view of the inherent shortcomings of the ant colony algorithm. In order to achieve the best performance of the algorithm, this paper analyzes each parameter in the ant colony algorithm in depth and obtains the optimal combination of parameters. The construction method of the Voronoi diagram was improved, and the method was simulated to verify that the method can obtain a Voronoi diagram path that is safer than the original method under certain time conditions. Through the principle analysis and simulation verification of the Dijkstra algorithm and the dual decomposition ant colony algorithm, it is concluded that the dual decomposition ant colony algorithm is more efficient in pathfinding. Finally, through simulation, it was verified that the dual decomposition ant colony algorithm can plan a safe and reasonable flight path for multiple UAV formation flights in an offline state and achieve offline global obstacle avoidance for multiple UAVs.

Funder

Science and Technology Plan Projects of Quzhou

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3