The Scale Effect of Coarse-Grained Materials by Triaxial Test Simulation

Author:

Ai Xiaotao1ORCID,Wang Guangjin1234ORCID,Kong Xiangyun124ORCID,Cui Bo1ORCID,Hu Bin5ORCID,Ma Hongling3ORCID

Affiliation:

1. Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China

2. National and Local Joint Engineering Research Center for Green Comprehensive Utilization of Metal Ore Tailings Resources, Kunming 650093, China

3. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China

4. Yunnan Key Laboratory of Sino-German Blue Mining and Utilization of Special Underground Space, Kunming 650093, China

5. School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China

Abstract

The scale effect is an unavoidable problem in the laboratory test of coarse-grained materials. By combining the self-developed cellular automaton program with laboratory experiments, a method of simulating the triaxial test of coarse-grained materials was proposed in this paper, and a triaxial test numerical specimen that can characterize the discontinuous, nonuniform, and heterogeneous characteristics of bulk geotechnical materials was established. The parallel grading method was adopted to create six grading curves for numerical simulation based on one in situ grading curve. The failure process and the scale effect on the strength and deformation of coarse-grained materials were analyzed and discussed. The results showed that under the same confining pressure, the peak stress and initial deformation modulus E i increased with the increase of the maximum particle size d max , while the degree of shear shrinkage and Poisson’s ration υ decreased. As the confining pressure increased, the scale effect of coarse-grained materials would be magnified. If particle breakage and migration were assumed to be neglected, the internal friction angle φ and d max would be roughly proportional, the cohesive force c fluctuated with the increase of d max , and the empirical relations between d max and c and φ were established, respectively, which provides a reference for estimating the actual shear strength parameters of coarse-grained materials on-site. The research results can provide a way of thinking for the study of the scale effect of coarse-grained materials and also have certain reference significance for inferring the strength parameters of the original-graded coarse-grained materials.

Funder

National Key Research and Development Plan

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3