Large-Eddy Simulation (LES) on the Square and Triangular Tall Buildings to Measure Drag Force

Author:

Daemei Abdollah B.1ORCID,Darvish Amiraslan2ORCID,Aeinehvand Roya3ORCID,Razzaghipour Amirali4ORCID

Affiliation:

1. Young Researchers and Elite Club, Rasht Branch, Islamic Azad University, Rasht, Iran

2. Faculty of Architecture and Urbanism, Imam Khomeini International University, Qazvin, Iran

3. School of Architecture Urban Planning Construction Engineering, Politecnico di Milano, Lecco, Italy

4. School of Design and the Built Environment, Curtin University, Perth, Australia

Abstract

The wind load issues play a significant role in designing tall buildings, which has sometimes been considered an even more essential factor than earthquake loads. Also, investigating wind behavior in tall buildings is a crucial issue in architectural and structural design. A primary concern of wind engineering and aerodynamics is drag force. Drag force refers to a solid object’s behavior in the relative wind flow velocity direction in terms of fluid dynamics. The investigation involved only drag forces. The Autodesk Flow Design 2014 software was utilized as a wind tunnel simulator. The Large Eddy Simulation (LES) method was used for turbulence solving. This study aims to optimize tall square and triangular-shaped buildings in order to reduce drag force under along-wind motion. For this purpose, architectural aerodynamic strategies such as chamfered, rounded, and recessed corners were applied as aerodynamic modifications. Moreover, aerodynamic forms, including tapering and setting back on shapes, were applied on 24 building models. Generally, the height (H) and breadth (b) ratios were set to H: 200 m, which is equivalent to almost 60 stories, and b: 25 m wide. The obtained results indicate that model S5 (with a square floor plan) achieved 0.65 CD, and the t1 (with a triangular floor plan) achieved 0.30 CD, which could provide the best building model to reduce drag force. In this regard, the s1 could perform over 50% better in reducing wind load. Concerning the aerodynamic modification performance, the simulation results indicate that these modifications were able to lead to over 50% better performance in reducing wind force in square samples compared to triangular samples.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3