Study on Model of Penetration into Thick Metallic Targets with Finite Planar Sizes by Long Rods

Author:

Wang Juan1ORCID,Zhao Junhai2ORCID,Zhang Jianhua1,Zhou Yuan1ORCID

Affiliation:

1. College of Science, Chang’an University, Xi’an 710064, China

2. School of Civil Engineering, Chang’an University, Xi’an 710061, China

Abstract

A finite cylindrical cavity expansion model for metallic thick targets with finite planar sizes, composed of ideal elastic-plastic materials, with penetration of high-speed long rod is presented by using the unified strength theory. Considering the lateral boundary and mass abrasion of the target, the penetration resistance and depth formulas are proposed, solutions of which are obtained by MATLAB program. Then, a series of different criteria-based analytical solutions are obtained and the ranges of penetration depth of targets with different ratios of target radius to projectile radius (rt/rd) are predicted. Meanwhile, the numerical simulation is performed using the ANSYS/LS-DYNA finite element code to investigate the variations in residual projectile velocity, length, and mass abrasion. It shows that various parameters have influences on the antipenetration performance of the target, such as the strength coefficient b, rt/rd, the shape of the projectile nose, and the impact velocity of the projectile, among which the penetration depth has increased by 18.95% as b = 1 decreases to b = 0 and has increased by 32.28% as rt/rd = 19.88 decreases to rt/rd = 4.9.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3