Reliability Analysis of a Complex Multistate System Based on a Cloud Bayesian Network

Author:

Jia Jin-Zhang123,Li Zhuang123ORCID,Jia Peng123,Yang Zhi-Guo4

Affiliation:

1. College of Safety Science and Engineering, Liaoning Technical University, Fuxin/123000, China

2. Institute of Safety Science, Liaoning Technical University, Fuxin/123000, China

3. Key Laboratory of Mine Thermal Power Disaster and Prevention by Ministry of Education, Huludao/125000, China

4. Liaohe Oilfield Construction Company Limited, Panjin /124000, China

Abstract

This study focused on mixed uncertainty of the state information in each unit caused by a lack of data, complex structures, and insufficient understanding in a complex multistate system as well as common-cause failure between units. This study combined a cloud model, Bayesian network, and common-cause failure theory to expand a Bayesian network by incorporating cloud model theory. The cloud model and Bayesian network were combined to form a reliable cloud Bayesian network analysis method. First, the qualitative language for each unit state performance level in the multistate system was converted into quantitative values through the cloud, and cloud theory was then used to express the uncertainty of the probability of each state of the root node. Then, the β-factor method was used to analyze reliability digital characteristic values when there was common-cause failure between the system units and when each unit failed independently. The accuracy and feasibility of the method are demonstrated using an example of the steering hydraulic system of a pipelayer. This study solves the reliability analysis problem of mixed uncertainty in the state probability information of each unit in a multistate system under the condition of common-cause failure. The multistate system, mixed uncertainty of the state probability information of each unit, and common-cause failure between the units were integrated to provide new ideas and methods for reliability analysis to avoid large errors in engineering and provide guidance for actual engineering projects.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3