A New Stemness-Related Prognostic Model for Predicting the Prognosis in Pancreatic Ductal Adenocarcinoma

Author:

Huang Xiao-Yan1,Qin Wen-Tao2,Su Qi-Sheng3ORCID,Qiu Cheng-Cheng1,Liu Ruo-Chuan1,Xie Shan-Shan1,Hu Yang2,Zhu Shang-Yong1ORCID

Affiliation:

1. Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, 530021 Nanning, Guangxi, China

2. Department of Bone and Joint Surgery, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, 530021 Nanning, Guangxi, China

3. Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, 530021 Nanning, Guangxi, China

Abstract

Objective. This study is aimed at identifying stemness-related genes in pancreatic ductal adenocarcinoma (PDAC). Methods. The RNA-seq data of PADC patients were downloaded from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. The mRNA expression-based stemness index (mRNAsi) and epigenetically regulated mRNAsi (EREG-mRNAsi) of PADC patients were evaluated. The mRNAsi-related gene sets in PADC were identified by weighted gene coexpression network analysis (WGCNA). The key genes were further analyzed using functional enrichment analysis. The Kaplan-Meier survival analysis and the Cox proportional hazards model were used to evaluate the prognostic value of the key genes. Prognostic hub genes were used to establish nomograms. The receiver operating characteristic (ROC) curves, concordance index ( C -index), and calibration curves were used to assess the discrimination and accuracy of the nomogram. Finally, these results were validated in the Gene Expression Omnibus (GEO) database. Results. A total of 36 key genes related to mRNAsi were identified by WGCNA. A prognostic gene signature compromising seven genes (TPX2, ZWINT, UBE2C, CCNB2, CDK1, BUB1, and BIRC5) was established to predict the overall survival (OS) of PADC patients. The Cox regression analysis revealed that the risk score was an independent prognostic factor for PADC. Patients were then divided into the high-risk and low-risk groups. The ROC curves, C -index, and calibration curves indicated good performance of the prognostic signature in the TCGA and GEO datasets. Moreover, the nomogram incorporating clinical parameters showed better sensitivity and specificity for predicting the OS of PADC patients. Conclusion. The stemness-related prognostic model successfully predicted the OS of PADC patients and could be used for the treatment of PADC.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3