Neural Network Optimization Method and Its Application in Information Processing

Author:

Wang Pin1,Wang Peng2ORCID,Fan En3

Affiliation:

1. School of Mechanical and Electrical Engineering, Shenzhen Polytechnic, Shenzhen 518055, Guangdong, China

2. Garden Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, Guangdong, China

3. Department of Computer Science and Engineering, Shaoxing University, Shaoxing 312000, Zhejiang, China

Abstract

Neural network theory is the basis of massive information parallel processing and large-scale parallel computing. Neural network is not only a highly nonlinear dynamic system but also an adaptive organization system, which can be used to describe the intelligent behavior of cognition, decision-making, and control. The purpose of this paper is to explore the optimization method of neural network and its application in information processing. This paper uses the characteristic of SOM feature map neural network to preserve the topological order to estimate the direction of arrival of the array signal. For the estimation of the direction of arrival of single-source signals in array signal processing, this paper establishes a uniform linear array and arbitrary array models based on the distance difference vector to detect DOA. The relationship between the DDOA vector and the direction of arrival angle is regarded as a mapping from the DDOA space to the AOA space. For this mapping, through derivation and analysis, it is found that there is a similar topological distribution between the two variables of the sampled signal. In this paper, the network is trained by uniformly distributed simulated source signals, and then the trained network is used to perform AOA estimation effect tests on simulated noiseless signals, simulated Gaussian noise signals, and measured signals of sound sources in the lake. Neural network and multisignal classification algorithms are compared. This paper proposes a DOA estimation method using two-layer SOM neural network and theoretically verifies the reliability of the method. Experimental research shows that when the signal-to-noise ratio drops from 20 dB to 1 dB in the experiment with Gaussian noise, the absolute error of the AOA prediction is small and the fluctuation is not large, indicating that the prediction effect of the SOM network optimization method established in this paper does not vary. The signal-to-noise ratio drops and decreases, and it has a strong ability to adapt to noise.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3