Experimental Study of the Effect of Confining on the Development of Fire in a Closed Compartment

Author:

Meskeoule Vondou Fidel12,Ngayihi Abbe Claude Valery12ORCID,Zaida Justin Tégawendé3,Mvogo Philippe Onguene4,Mouangue Ruben14ORCID

Affiliation:

1. National Higher Polytechnic School, University of Douala, Douala, Cameroon

2. Laboratory of Energy, Materials, Modelling and Methods, University of Douala, Douala, Cameroon

3. Department of Physics, University of Fada, Fada-Ngourma, Gourma Province, Burkina Faso

4. Group of Research in Combustion and Green Technology, University of Ngaoundere, Ngaoundere, Cameroon

Abstract

Backdraft is a complex phenomenon which occurs during cases of confined fires. It appears by a fast deflagration which occurs after the introduction of oxygen into a compartment filled with hot gases rich in unburned combustible vapor. Practically, this situation could occur at the time of intervention of firemen who break the door or when a window breaks under the action of thermal stresses. Based on a strong experimental campaign, the present paper aimed to make a quantitative investigation of the effect of confining on a totally closed fire. With this focus, fire tests were carried out in a completely closed room of dimensions 1.20 m × 1.20 m × 1.02 m, with five sources of fire of different heat release rates. The same fire sources were also tested in a free atmosphere in order to get reference data. After a statistical study of data, a comparative analysis between both results has been done. Its outcome is that confining has a major impact on the quality of combustion and on the fire duration. More precisely, it has been noticed comparatively to fire tests in free atmosphere that confining increases the fire duration by 14.85 percent while it decreases the heat release rate by 21.72 percent.

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Condensed Matter Physics,Fuel Technology,General Chemical Engineering

Reference32 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3