Fuzzy Frequent Pattern Mining Algorithm Based on Weighted Sliding Window and Type-2 Fuzzy Sets over Medical Data Stream

Author:

Chen Jing12ORCID,Li Peng34ORCID,Fang Weiqing3ORCID,Zhou Ning3ORCID,Yin Yue3ORCID,Zheng Hui3ORCID,Xu He34ORCID,Wang Ruchuan34

Affiliation:

1. School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

2. Baotou Teachers’ College of Inner Mongolia University of Science and Technology, Inner Mongolia, Baotou 014030, China

3. School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

4. Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing, Jiangsu Province 210023, China

Abstract

Real-time data stream mining algorithms are largely based on binary datasets and do not handle continuous quantitative data streams, especially in medical data mining field. Therefore, this paper proposes a new weighted sliding window fuzzy frequent pattern mining algorithm based on interval type-2 fuzzy set theory over data stream (WSWFFP-T2) with a single scan based on the artificial datasets of medical data stream. The weighted fuzzy frequent pattern tree based on type-2 fuzzy set theory (WFFPT2-tree) and fuzzy-list sorted structure (FLSS) is designed to mine the fuzzy frequent patterns (FFPs) over the medical data stream. The experiments show that the proposed WSWFFP-T2 algorithm is optimal for mining the quantitative data stream and not limited to the fragile databases; the performance is reliable and stable under the condition of the weighted sliding window. Moreover, the proposed algorithm has high performance in mining the FFPs compared with the existing algorithms under the condition of recall and precision rates.

Funder

Postgraduate Research and Practice Innovation Program of Jiangsu Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3