Manoalide Shows Mutual Interaction between Cellular and Mitochondrial Reactive Species with Apoptosis in Oral Cancer Cells

Author:

Wang Hui-Ru1,Chen Ping-Ho23ORCID,Tang Jen-Yang45ORCID,Yen Ching-Yu67ORCID,Su Yong-Chao1ORCID,Huang Ming-Yii45ORCID,Chang Hsueh-Wei138ORCID

Affiliation:

1. Department of Biomedical Science and Environmental Biology, PhD Program of Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan

2. School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan

3. Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan

4. Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan

5. Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan

6. Department of Oral and Maxillofacial Surgery, Chi-Mei Foundation Medical Center, Tainan, Taiwan

7. School of Dentistry, Taipei Medical University, Taipei, Taiwan

8. Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan

Abstract

We previously found that marine sponge-derived manoalide induced antiproliferation and apoptosis of oral cancer cells as well as reactive species generations probed by dichloro-dihydrofluorescein diacetate (DCFH-DA) and MitoSOX Red. However, the sources of cellular and mitochondrial redox stresses and the mutual interacting effects between these redox stresses and apoptosis remain unclear. To address this issue, we examined a panel of reactive species and used the inhibitors of cellular reactive species (N-acetylcysteine (NAC)), mitochondrial reactive species (MitoTEMPO), and apoptosis (Z-VAD-FMK; ZVAD) to explore their interactions in manoalide-treated oral cancer Ca9-22 and CAL 27 cells. Hydroxyl (˙OH), nitrogen dioxide (NO2˙), nitric oxide (˙NO), carbonate radical-anion (CO3˙–), peroxynitrite (ONOO–), and superoxide (O2˙–) were increased in oral cancer cells following manoalide treatments in terms of fluorescence staining and flow cytometry. Cellular reactive species (˙OH, NO2⋅, ˙NO, CO3˙–, and ONOO–) as well as cellular and mitochondrial reactive species (O2˙–) were induced in oral cancer cells following manoalide treatment for 6 h. NAC, MitoTEMPO, and ZVAD inhibit manoalide-induced apoptosis in terms of annexin V and pancaspase activity assays. Moreover, NAC inhibits mitochondrial reactive species and MitoTEMPO inhibits cellular reactive species, suggesting that cellular and mitochondrial reactive species can crosstalk to regulate each other. ZVAD shows suppressing effects on the generation of both cellular and mitochondrial reactive species. In conclusion, manoalide induces reciprocally activation between cellular and mitochondrial reactive species and apoptosis in oral cancer cells.

Funder

Ministry of Health and Welfare

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3