Bioinformatics Analysis for Identifying Differentially Expressed MicroRNAs Derived from Plasma Exosomes Associated with Radiotherapy Resistance in Non-Small-Cell Lung Cancer

Author:

Zeng Lirong1,Zeng Guilin2,Ye Zhong1ORCID

Affiliation:

1. Chengdu Railway Health School, Chengdu, China

2. Chengdu Fifth People’s Hospital, Chengdu, China

Abstract

Objective. To explore the differentially expressed microRNAs (DEmiRs) derived from plasma exosomes related to radiotherapy resistance and their corresponding pathways in non-small-cell lung cancer (NSCLC). Methods. Plasma samples from NSCLC patients were retrieved and analyzed. The patients were divided into 3 groups based on the tumor regression grade criteria, assessed by radiological imaging after radiotherapy. TRG1 referred to tumor shrinkage of ≤30% after radiotherapy, TRG2 as 30 % < TRG < 50 % , and TRG3 as TRG 50 %. High-throughput sequencing and bioinformatics analysis were used to compare the DEmiRs between the three groups. The miRanda, PITA, and RNAhybrid software were used to identify potential target genes of the DEmiRs. GO function enrichment and KEGG pathway enrichment analyses were performed on the target gene set. Results. There were 24 DEmiRs (12 were upregulated and 12 downregulated) between the TRG1 and TRG2 groups, 11 between the TRG1 and TRG3 groups (6 upregulated and 5 downregulated), and 35 between the TRG2 and TRG3 groups. The common DEmiRs between the three groups were miR-92a-3p. GO analysis showed that the target genes of the DEmiRs were mainly enriched in unicellular organism processes, cell transformation, cell localization, and their establishment. KEGG enrichment analysis showed that target genes were significantly enriched in the Ras signaling pathway and associated with endocytosis. Among the 135 identified target genes of miR-92a-3p, 4 were involved in the PI3K-Akt signaling pathway (the downstream pathway of the Ras gene) and 3 in the cAMP signaling pathway (the upstream pathway of the Ras gene). Further, 2 other target genes were involved in the Rap1 signaling pathway (the upstream pathway of PI3K-Akt). Conclusion. By assessing the expression and functional profile of DEmiRs in the plasma exosomes of NSCLC patients after radiotherapy, miR-92a-3p was identified as a promising target affecting radiotherapy outcomes through the Ras signaling pathway.

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3