Survey of Graph Neural Networks and Applications

Author:

Liang Fan1,Qian Cheng2,Yu Wei2ORCID,Griffith David3,Golmie Nada3

Affiliation:

1. Sam Huston State University, USA

2. Towson University, USA

3. National Institute of Standards and Technology (NIST), USA

Abstract

The advance of deep learning has shown great potential in applications (speech, image, and video classification). In these applications, deep learning models are trained by datasets in Euclidean space with fixed dimensions and sequences. Nonetheless, the rapidly increasing demands on analyzing datasets in non-Euclidean space require additional research. Generally speaking, finding the relationships of elements in datasets and representing such relationships as weighted graphs consisting of vertices and edges is a viable way of analyzing datasets in non-Euclidean space. However, analyzing the weighted graph-based dataset is a challenging problem in existing deep learning models. To address this issue, graph neural networks (GNNs) leverage spectral and spatial strategies to extend and implement convolution operations in non-Euclidean space. Based on graph theory, a number of enhanced GNNs are proposed to deal with non-Euclidean datasets. In this study, we first review the artificial neural networks and GNNs. We then present ways to extend deep learning models to deal with datasets in non-Euclidean space and introduce the GNN-based approaches based on spectral and spatial strategies. Furthermore, we discuss some typical Internet of Things (IoT) applications that employ spectral and spatial convolution strategies, followed by the limitations of GNNs in the current stage.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An all-purpose method for optimal pressure sensor placement in water distribution networks based on graph signal analysis;Water Research;2024-11

2. Obtaining and qualitative analysis of time-lagged correlations between seawater quality parameters;Measurement Science and Technology;2024-09-06

3. IDEA: A Flexible Framework of Certified Unlearning for Graph Neural Networks;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

4. A FPGA-HBM-Based Hardware Streaming Accelerator for GNN Sampling;2024 IEEE 35th International Conference on Application-specific Systems, Architectures and Processors (ASAP);2024-07-24

5. Modelling Graph Neural Network by Aggregating the Activation Maps of Self-Organizing Map;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3