Target Adaptive Tracking Based on GOTURN Algorithm with Convolutional Neural Network and Data Fusion

Author:

Li Zhengze12ORCID,Xu Jiancheng1

Affiliation:

1. School of Electronics and Information, Northwestern Polytechnic University, Xi’an, Shaanxi 710016, China

2. Sixth Research Institute of China Aerospace Science and Technology Corporation, Xi’an, Shaanxi 710100, China

Abstract

With the advent of the artificial intelligence era, target adaptive tracking technology has been rapidly developed in the fields of human-computer interaction, intelligent monitoring, and autonomous driving. Aiming at the problem of low tracking accuracy and poor robustness of the current Generic Object Tracking Using Regression Network (GOTURN) tracking algorithm, this paper takes the most popular convolutional neural network in the current target-tracking field as the basic network structure and proposes an improved GOTURN target-tracking algorithm based on residual attention mechanism and fusion of spatiotemporal context information for data fusion. The algorithm transmits the target template, prediction area, and search area to the network at the same time to extract the general feature map and predicts the location of the tracking target in the current frame through the fully connected layer. At the same time, the residual attention mechanism network is added to the target template network structure to enhance the feature expression ability of the network and improve the overall performance of the algorithm. A large number of experiments conducted on the current mainstream target-tracking test data set show that the tracking algorithm we proposed has significantly improved the overall performance of the original tracking algorithm.

Funder

Northwestern Polytechnical University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3