Affiliation:
1. Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, State of Palestine
Abstract
This study is aimed at developing coriander oil into a nanoemulgel and evaluating its antimicrobial and anticancer effects. Coriander (Coriandrum sativum) oil was developed into a nanoemulgel by using a self-nanoemulsifying technique with Tween 80 and Span 80. Hydrogel material (Carbopol 940) was then incorporated into the nanoemulsion and mixed well. After this, we evaluated the particle size, polydispersity index (PDI), rheology, antimicrobial effect, and cytotoxic activity. The nanoemulsion had a PDI of 0.188 and a particle size of 165.72 nm. Interesting results were obtained with the nanoemulgel against different types of bacteria, such as Pseudomonas aeruginosa, Klebsiella pneumoniae, and methicillin-resistant Staphylococcus aureus (MRSA), with a minimum inhibitory concentration (MIC) of 2.3 μg/ml, 3.75 μg/ml, and 6.5 μg/ml, respectively. In addition, the half-maximal inhibitory concentration (IC50) of the nanoemulgel when applying it to human breast cancer cells (MCF-7), hepatocellular carcinoma cells (Hep3B), and human cervical epithelioid carcinoma cells (HeLa) was 28.84 μg/ml, 28.18 μg/ml, and 24.54 μg/ml, respectively, which proves that the nanoemulgel has anticancer effects. The development of C. sativum oil into a nanoemulgel by using a self-nanoemulsifying technique showed a bioactive property better than that in crude oil. Therefore, simple nanotechnology techniques are a promising step in the preparation of pharmaceutical dosage forms.
Funder
An-Najah National University
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献