Plasmachemical Synthesis of Nanopowders in the System Ti(O,C,N) for Material Structure Modification

Author:

Filkov Michael1,Kolesnikov Andrei2ORCID

Affiliation:

1. VIESH Research Institute, 21st Veshnyakovsky Pr., Moscow 109456, Russia

2. Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa

Abstract

Refractory nanoparticles are finding broad application in manufacturing of materials with enhanced physical properties. Production of carbide, nitride, and carbonitride nanopowders in high volumes is possible in the multijet plasmachemical reactor, where temperature and velocity distributions in reaction zone can be controlled by plasma jet collision angle and mixing chamber geometry. A chemical reactor with three Direct Current (DC) arc plasma jets intersecting at one point was applied for titanium carbonitride synthesis from titanium dioxide, propane-butane mixture, and nitrogen. The influence of process operational parameters on the product chemical and phase composition was investigated. Mixing conditions in the plasma jet collision zone, particles residence time, and temperatures were evaluated with the help of Computational Fluid Dynamics (CFD) simulations. The synthesized nanoparticles have predominantly cubic shape and dimensions in the range 10–200 nm. Phase compositions were represented by oxycarbonitride phases. The amount of free (not chemically bonded) carbon in the product varied in the range 3–12% mass, depending on synthesis conditions.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3