SLA Aware Task-Scheduling Algorithm in Cloud Computing Using Whale Optimization Algorithm

Author:

Mangalampalli Sudheer1ORCID,Swain Sangram Keshari2ORCID,Karri Ganesh Reddy1ORCID,Mishra Satyasis3ORCID

Affiliation:

1. School of Computer Science and Engineering, VIT-AP University, Amaravati, AP, India

2. Centurion University of Technology and Management, Sitapur, Odisha, India

3. Adama Science and Technology University, Adama, Ethiopia

Abstract

Task scheduling in Cloud Computing paradigm poses new challenges for cloud provider as heterogeneous, diversified tasks arrived on to cloud console. To schedule these type of tasks efficiently on to virtual resources in cloud paradigm, an effective scheduler is needed, which precisely maps tasks to virtual machines by considering priorities of both tasks and VMs. Existing scheduling algorithms failed to map tasks precisely to virtual resources due to high dynamic nature in cloud environment which leads to increase of makespan and SLA violations will be increased. In this paper, authors proposed a task-scheduling mechanism, which considers task priorities and VMs. To model this scheduling paradigm we have chosen whale optimization through which our scheduler will take decisions for scheduling tasks precisely onto virtual resources in cloud environment. Entire simulation was carried out on CloudSim. Initially we have chosen random generated workload to run simulation and after that, we have considered a real-time workload named as BigDataBench and ran our simulation. Finally, we compared our proposed work with classical baseline mechanisms. From simulations we observed that proposed whale scheduler improved makespan for PSO, ACO, GA, and W-schedulers by 20.07%, 17.55%, 19.9%, and 6.35%, respectively, and 17.3%, 17.86%, 17.64%, and 5.93%, respectively, for BigDataBench workloads. SLA violations improved over PSO, ACO, GA, and W-Scheduler by 56.76%, 42.17%, 35.29%, and 24.53%, respectively, and 63.42%, 23.33%, 55.51%, and 40.1%, respectively, for BigDataBench workloads. From extensive simulation results, our proposed scheduler using whale optimization approach minimizes makespan and SLA violations to a great extent.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Reference29 articles.

1. Principles of edge computing, fog and cloud computing;D. Sabella,2021

2. A survey on cloud computing;M. U. Bokhari,2018

3. A brief review: security issues in cloud computing and their solutions

4. Dynamic PSO for task scheduling optimization in cloud computing;M. S. Sudheer;International Journal of Recent Technology and Engineering,2019

5. Multi-Objective Task Scheduling Using Hybrid Genetic-Ant Colony Optimization Algorithm in Cloud Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3