Sucrose, Lactose, Thermogravimetry, and Differential Thermal Analysis: The Estimation of the Moisture Bond Types in Lactose-Containing Ingredients for Confectionery Products with Reduced Glycemic Index

Author:

Melnikova Elena1ORCID,Bogdanova Ekaterina1ORCID,Paveleva Daria1ORCID,Saranov Igor1ORCID

Affiliation:

1. Voronezh State University of Engineering Technologies, Russia

Abstract

This research is aimed at conducting a comparative analysis of the dehydration process of lactose-containing ingredients and sucrose. Differential scanning calorimetry (DSC) and thermogravimetry (TG) methods were used to investigate the moisture bond types and the process of thermal degradation in native whey, dried skimmed milk, dried whole milk, dried milk whey demineralized, purified lactose, and sucrose. There were several peaks on the DSC and TG curves for lactose-containing ingredients. They determine the loss of the physically absorbed water on surfaces, physically occluded water and hydrate-forming water (up to 180°C), anomerization of lactose (160–220°C), and melting followed by decomposition (above 230°C). The multiple peaks on the dDSC curves from 135 to 170°C indicate the course of the Maillard reaction in the mix with proteins. For the native whey, the amount of chemically bound water was 56.11 ± 1 %; for the dried whole milk, it was 59.86 ± 1 %; for the milk whey demineralized, it was 64.56 ± 1 %; and for the dried skimmed milk, it was 67.17 ± 1 %. The results are presented as mean values ± SD ( n = 3 ) and were considered statistically significant when P < 0.05 . The similar to some extent form of the DSC and TG curves to lactose-containing ingredients and granulated sugar confirms the possibility of using them as the component of bakery and confectionery product formulas to reduce the glycemic index and improve organoleptic properties of products as well as correct their mineral compositions. Considering the constant changing of technologies for obtaining various dairy ingredients as well as the occurrence of their new kinds, such studies contribute to the expansion of existing knowledge and reference data.

Funder

Federal Target Program

Publisher

Hindawi Limited

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3